Molecular details of quinolone–DNA interactions: solution structure of an unusually stable DNA duplex with covalently linked nalidixic acid residues and non-covalent complexes derived from it
نویسندگان
چکیده
Quinolones are antibacterial drugs that are thought to bind preferentially to disturbed regions of DNA. They do not fall into the classical categories of intercalators, groove binders or electrostatic binders to the backbone. We solved the 3D structure of the DNA duplex (ACGCGU-NA)2, where NA denotes a nalidixic acid residue covalently linked to the 2'-position of 2'-amino-2'-deoxyuridine, by NMR and restrained torsion angle molecular dynamics (MD). In the complex, the quinolones stack on G:C base pairs of the core tetramer and disrupt the terminal A:U base pair. The displaced dA residues can stack on the quinolones, while the uracil rings bind in the minor groove. The duplex-bridging interactions of the drugs and the contacts of the displaced nucleotides explain the high UV-melting temperature for d(ACGCGU-NA)2 of up to 53 degrees C. Further, non-covalently linked complexes between quinolones and DNA of the sequence ACGCGT can be generated via MD using constraints obtained for d(ACGCGU-NA)2. This is demonstrated for unconjugated nalidixic acid and its 6-fluoro derivative. The well-ordered and tightly packed structures thus obtained are compatible with a published model for the quinolone-DNA complex in the active site of gyrases.
منابع مشابه
Molecular Modeling of indeno [1,2-b] quinoline-9,11-diones as cytotoxic agents
Deoxyribonucleic acid (DNA) is an important molecular target for anti-cancer agents due to its involvement in gene expression and protein synthesis which are fundamental steps in cell division and growth. A number of antineoplastic agents interfere with DNA and hence disturb the cell cycle. Compounds including planar aromatic rings are privileged scaffolds in binding to the DNA. This characteri...
متن کاملMolecular Modeling of indeno [1,2-b] quinoline-9,11-diones as cytotoxic agents
Deoxyribonucleic acid (DNA) is an important molecular target for anti-cancer agents due to its involvement in gene expression and protein synthesis which are fundamental steps in cell division and growth. A number of antineoplastic agents interfere with DNA and hence disturb the cell cycle. Compounds including planar aromatic rings are privileged scaffolds in binding to the DNA. This characteri...
متن کاملSolution structure of S-DNA formed by covalent base pairing involving a disulfide bond.
Here, we present the solution structure of a DNA duplex containing a disulfide base pair (S-DNA). The unnatural nucleoside "S" possessing a thiophenyl group as base was incorporated into a self-complementary singled-stranded oligonucleotide. Crosslinking of the disulfide base pair was analyzed by non-denaturing polyacrylamide gel electrophoresis. Under oxidizing conditions a high molecular weig...
متن کاملSolution structure and stability of tryptophan-containing nucleopeptide duplexes.
Covalently linked peptide-oligonucleotide hybrids were used as models for studying tryptophan-DNA interactions. The structure and stability of several hybrids in which peptides and oligonucleotides are linked through a phosphodiester bond between the hydroxy group of a homoserine (Hse) side chain and the 3'-end of the oligonucleotide, have been studied by both NMR and CD spectroscopy and by res...
متن کاملA theoretical study on interactions between Berberine as an anticancer drug and DNA
In this study, we present the work on the physicochemical interaction between the anti-cancer alkaloidberberine (BRB) and DNA with the purpose of designing drugs that interact more with DNA. Molecularmodeling on the complex formed between berberine and DNA presented that this complex was undeniablyfully able of participating in the formation of a stable intercalation site. Besides, the molecula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005